Preliminary communication

THE PREPARATION OF MONO (n^5 -CYCLOPENTADIENYL) COMPLEXES OF NIOBIUM AND TANTALUM

R.J. BURT, J. CHATT, G.J. LEIGH, J.H. TEUBEN* and A. WESTERHOF* A.R.C. Unit of Nitrogen Fixation, University of Sussex, Brighton, BNI 9QJ, U.K., and *Department of Chemistry, University of Groningen, Groningen, The Netherlands

(Received February 1st, 1977)

SUMMARY

Treatment of NbX₅ or TaX₅ (X = Br or Cl) with $Mg(C_5H_5)_2$ or $Sn(CH_3)_3(C_5H_5)$ produces the complexes $[M(C_5H_5)X_4]$ (X = Cl, M = Nb or Ta; X = Br, M = Ta) and $[Nb(C_5H_5)Br_3]$.

In our attempts to open up the chemistry of niobium and tantalum in mononuclear complexes of low oxidation state, we required compounds containing a single n⁵-cyclopentadienyl These were, in contrast to the $bis(\eta^5-cyclopenta$ ligand. dienyl) complexes of niobium and tantalum, not easily available¹. However, we now find that the complexes $[M(C_5H_5)X_n]$ (M = Nb or Ta; X = Cl or Br; n = 4 in most cases, otherwise 3) are readily prepared by the reaction of MX₅ with one equivalent of cyclopentadienyl derivatives such as $Mg(C_{5}H_{5})^{2}$ or $Sn(CH_{3})_{3}(C_{5}H_{5})^{3}$. In contrast the reaction of $[VCl_2(thf)_2]$ (thf = tetrahydrofuran) with Mg(C₅H₅)₂ or Sn(CH₃)₃(C₅H₅) generally produces [V(C₅H₅)₂Cl] regardless of the molar proportions used. A typical preparation is as follows.

Reaction of TaX_5 with Mg(C₅H₅)₂

The tantalum halide (<u>ca</u> 6g) was mixed with 0.5mol of $Mg(C_5H_5)_2$ in toluene (100cm³). After 12h. at 25° the toluene was removed under reduced pressure ($10^{-3}mmHg$) and the residue

			<u>Table - M</u>	Table - Mono(cyclopentadienyl) complexes	<u>tadienyl</u>) complexes		
		Form	Form and sublimation temp. (°C)	Characteristic i.r. peaks ^a cm ⁻¹	stic cm - 1	Principal	Principal ions in mass spectra m/e	spectra
[Ta (C ₅	[Ta (C ₅ H ₅) Br ₄] ^b	Red-(226°,	Red-orange crystals 226°, 0.5 mmHg	872 vs, 1018 1125 w, 1432	18 m, 32 s.	Ta (C ₅ H ₅) Br ₃ 483-489	raBr ₄ 497-505	TaBr ₃ 418-428
[Ta (C ₅	{Ta (C ₅ H ₅) Cl ₄) ^C .	Yell(230°,	Yellow crystals 230°, 0.05 mmHg	878 vs, 1018 1128 w, 1432	18 m, 32 s.	Ta (C ₅ H ₅) Cl ₃ 351-355	rac1 ₄ 321-327	raC1 ₃ 286-290
[Nb (C5	[Nb (C ₅ H ₅) Br ₃] ^d	Blac) 300°,	Black platelets 300°, 0.04 mmHg	850 s, 865 s, 1020 m, 1130 w, 1435 s.	в, 30 м,	Nb(C ₅ H ₄)Br ₃ 394-400	Nb (C ₅ H ₄) Br ₂ 315-319	Nb (C ₅ H ₄) Br 236-238
[Nb (C ₅	[Nb (C ₅ H ₅) Cl ₄] ^e	Red (Red crystals	800 w, 870 vs, 900 w, 1020 m, 1075 w, 1130 w, 1260 w, 1420 s.	vs, 0 m, 30 w,	Nb(C ₅ H ₅)C1 ₃ 263-267	NbC1 ₄ 232-235 vw	NbCl ₃ 198-204 vw
ي م	Nujol mulls.							
Analys	es: found	l (regu	Analyses: found (required) percent.					
บ ค	11.0(10.	e); I	C 11.0(10.6); H 0.96(0.84);	Ta 33.5(32.0);	0); Br	55.5(56.5).		
ບ ບ	15.7(15.5);		H 1.40(1.30);	Ta 47.1(46.7);	7); Cl	36.0(36.6).		
U T	14.8(15.1);		H 1.40(1.27); 1	Br 60.4(60.3).	3).			
ບ ຍ	20.5(20.	3 4 (0	C 20.5(20.0); H 2.01(1.68); H	Nb 30.8(31.0); C1 45.9(47.3).	1); C1	45.9(47.3).		

.

÷ 1 7 2 Mono / or ⊂[({aT})

C34

(yellow, X = Cl; or orange, X = Br) extracted with dichloromethane to give a crystalline product. Pure $[Ta(C_5H_5)X_4]$ was obtained by sublimation (230°, 0.05mmHg) or recrystallisation from dichloromethane. Characterisation was by i.r. spectroscopy (which showed a band pattern characteristic of mono- rather than bis-cyclopentadieny1⁴ complexes), mass spectrometry (which confirmed the presence of four, or in one case, three, halogen atoms per metal atom) and elemental analysis (see Table). When M = Nb and X = Br some reduction occurs and the product is [Nb(C₅H₅)Br₃].

The reactions of $Mg(C_5H_5)_2$ and $Sn(CH_3)_3(C_5H_5)$ with MX_5 represent the first reliable and reproducible method of synthesising $[M(C_5H_5)X_n]$ type compounds where M = Ta or Nb. We have since learned that other workers have synthesised $[Nb(C_5H_5)Cl_4]$ from NbCl₅ and $Sn(Bu^n)_3(C_5H_5)^5$. Cyclopentadienyls which are stronger reducing agents, <u>e.g</u>. NaC₅H₅ produce intractible partially reduced mixtures.

ACKNOWLEDGEMENT

J.H. Teuben wishes to acknowledge financial support by the Netherlands Organisation for the Advancement of Pure Research (ZWO).

REFERENCES

- See, for example, K.N. Anisimov, N.E. Kolobova and A.A. Pasynskii, Izvestia Akad. Nauk S.S.S.R., Ser. Khim, (1969) 2238.
- 2 W.A. Barber, Inorg. Syntheses, Vol. 6, p.11.
- 3 H.P. Fritz and C.G. Kreiter, J. Organometal. Chem., <u>1</u>, (1964), 323.
- 4 H.P. Fritz, Adv. Organometal. Chem., 1, (1964), 240.
- 5 M.L.H. Green, personal communication*.

^{*} since submission of this communication a referee has drawn our attention to the publication, which has just appeared, by M.J. Bunker, A. De Cian and M.L.H. Green, J.C.S. Chem. Comm., (1977), 59, who have explored the alkyl(cyclopentadienyl)tin route in greater depth.